
Computing Planarity in Computable Planar

Graphs

Oscar Levin and Taylor McMillan

2015

Abstract

We use methods from computability theory to answer questions about
infinite planar graphs. A graph is computable if there is an algorithm
which decides whether given vertices are adjacent. Having a procedure
for deciding the edge set might not help compute other properties or
features of the graph, however. The goal of this paper is to investigate
the extent to which features related to the planarity of a graph might or
might not be computable. We propose three definitions for what it might
mean for a computable graph to be computably planar and for each build
a computable planar graph which fails to be computably planar. We
also consider these definitions in the context of highly computable graphs,
those for which there is an algorithm which computes the degree of a given
vertex.

1 Introduction

Many results in graph theory that are true of finite graphs can be extended to
(countably) infinite graphs. For example, the four color theorem for finite graphs
implies that every infinite planar graph is 4-colorable [4]. We can also extend
the study of complexity to infinite graphs by using tools from computability
theory (which until recently has been called recursion theory). For example,
in the finite case we ask for the complexity of finding a proper vertex coloring
by measuring the time or space required to produce the coloring. For infinite
graphs, we measure the complexity in part by asking whether there even exists
a computable coloring. An early result in this area is due to Bean: there is a
computable planar graph which is not computably k-colorable for any natural
number k [1]. Thus while the four color theorem extends to infinite graphs, it
does not do so effectively.

Results of this flavor abound. It is possible to build infinite computable
graphs which have Euler paths but no computable Euler paths [2], Hamilton
paths but no computable Hamilton paths [7], domatic k-partitions but no com-
putable domatic k-partitions [8], matchings but no computable matchings [11],
edge colorings but no computable edge colorings [9], and so on (see [6] for a

1



survey). In each of these examples, while the results deal with infinite graphs,
there are implications to finite graph theory, especially if you consider the proofs
of the results. To be able to construct a computable graph with property P but
no computable P , you defeat a potential computation of P at some finite stage.
This says that to be able to compute P , you must look at the entire graph. This
is possible for finite graphs, but suggests high complexity for the calculation.

For the computability theory results about vertex coloring and Euler paths,
the computable graphs constructed happen to be planar. In both cases, the way
we know the graphs are planar is that from the construction it is clear how you
could draw the graph in the plane. We wonder whether working with planar
graphs in computability theory would always be this straight forward. In fact,
could we get results like those mentioned above about the planarity itself of a
graph? Before we can have any hope of achieving this, we must first decide
what it means for the planarity of a graph to be computable.

In this paper we will consider three potential definitions for what it means
for a graph to be computably planar. In each case, we will construct a graph
which is planar but not computably planar. We then further refine our results by
considering highly computable graphs and by investigating how noncomputable
the planarity could be. After dealing with some preliminaries in Section 2, we
start in Section 3 by considering computable planar embeddings. This is the
most obvious way to discuss the planarity of a graph, but it is not straight
forward to describe this effectively. When given a particular planar embedding,
we can ask whether two vertices border the same face. We establish that this
question cannot always be answered effectively in Section 4. An alternative
relation on planar embeddings is to ask whether two adjacent edges are radially
adjacent in the embedding, meaning you can rotate around their common vertex
from one to the other without encountering another edge between them. We
show that this too need not be computable for computable graphs in Section 5.
We conclude with some ideas for further research in Section 6.

2 Preliminaries

Throughout this paper we will take a rather intuitive view of planar graphs and
planar graph embeddings (or drawings). We will discuss faces as regions in the
plane bounded by edges and vertices, and talk about regions inside or outside of
cycles. For a more rigorous (topological) basis for these concepts, see Chapter
4 of [3].

There are a few additional details that should be considered when working
with infinite planar graphs. Since we wish to consider computable graphs, all
our graphs will be countable (in fact, we will use N = {0, 1, 2, . . .} for the vertex
set). As we do for finite graphs, we say that an infinite graph is planar if there
is an embedding of the vertices into the real plane and the edges, represented
as Jordan curves, never cross (that is, two edges intersect at no more than one
point, the vertex to which they are both incident). To simplify matters, we will
insist that our edges are actually straight lines. There is no loss of generality here

2



as an infinite graph is planar if and only if there is a straight line representation
(with a bounded vertex set, in fact). This is due to Thomassen [13], an extension
of the finite Fáry’s theorem [5]. In Section 4 we will consider faces of a planar
graph. For infinite graphs, this can be tricky: there can be multiple unbounded
faces, and of course faces bounded by infinitely many edges. In particular, it is
not entirely clear how to define a face in the presence of an accumulation point
of vertices (a point in the plane for which every open neighborhood contains
vertices); could such a point separate two faces? Our approach is to avoid these
messy situations as much as possible.

To discuss whether notions of planarity are effective, we must present our
infinite graphs nicely. Intuitively, a graph should be computable provided there
is some algorithm which decides if vertices are adjacent. We could certainly
make this more formal by using Turing machines or another formal definition
for computable functions, but by the Church-Turing thesis, all these models
of computation are equivalent, so we will simply consider informal algorithms.
The important piece is that our algorithms themselves are finite, and for specific
inputs, when they halt they do so in finite time using finite space (although both
of these can be unbounded as we range over all inputs). In general, an algorithm
ϕ does not need to halt on all inputs, and so is called a partial computable
function. If ϕ does halt on all inputs we say the function ϕ is total computable
or simply computable. Technically our algorithms always accept a single input
and give a single output (if they halt at all), but by using computable pairing
functions we can also input or output finite tuples, as we need to for graphs.
Given a pair of vertices, the computable function should output either 0 or 1 to
specify whether the pair of vertices is adjacent.

There is an effective list of all partial computable functions (think of listing
all algorithms in alphabetical order). We will denote this ϕ0, ϕ1, . . .. We write
ϕ(x)↓ and say that ϕ halts on input x if the algorithm does produce an output
for input x, otherwise we write ϕ(x) ↑. There is no way to know in advance
whether a particular algorithm in this list will halt on a given input. This is the
halting set : K = {e ∈ N : ϕe(e) ↓}. This set is not computable (that is, the
characteristic function for K is not a computable function), but is computably
enumerable—there is an algorithm that lists out every element in K eventually
(and never lists an element not in K). The halting set is the most complex c.e.
set in that it can compute every other c.e. set (either by using K as an oracle
or in a many-one reduction). For more details on these basics of computability
theory, we recommend the standard [12], whose notation we follow.

In the upcoming sections we will prove that there are computable graphs
which have properties that are not computable. There are essentially two ways
to do this. First, we could diagonalize against all partial computable functions
by finding one or more inputs for each ϕe that witness that ϕe is “wrong.” The
alternative approach is to code in K, so that if the property were computable,
we would then be able to compute K, a contradiction. The latter method is
stronger since this says the property is as complicated as the halting set (there
are noncomputable functions where are strictly less complicated than K).

Regardless of which method we adopt, we will construct the computable

3



graphs to have the required properties. We build the graphs by adding new ver-
tices at each stage. Since the graphs need to be computable, once we enumerate
a vertex we must immediately say to which previously enumerated vertices they
are adjacent. This is also sufficient: the algorithm to decide whether two vertices
are adjacent can simply run our construction until both vertices are mentioned,
and at that point say whether they are adjacent. Notice that we do not need to
specify all vertices adjacent to a vertex at this point, just those which we have
already enumerated. This will be extremely helpful. If we use diagonalization,
our constructions will build the graph while waiting for each ϕe to halt on some
fixed set of vertices, which can happen arbitrarily late. At that point, we can
add a new neighbor to one of the fixed “early” vertices to defeat ϕe. If we try
to code in K, there too we wait to see a particular number enumerated into K,
which can happen arbitrarily late.

It is interesting to consider what might happen if this mechanic was not per-
mitted. To add such a restriction, we consider highly computable graphs. These
are locally finite computable graphs which in addition have computable degree
function. Note that from the degree of a vertex, we can effectively find a list
of all adjacent vertices by searching: keep asking whether vertices are adjacent
until you have found them all. When constructing highly computable graphs,
we will need to specify all adjacent vertices as soon as a vertex is enumerated in
the construction. The added information present in highly computable graphs
often is enough to help compute properties of the graph. For example, while
not all computable Eulerian graphs have a computable Euler path, each highly
computable graph does [2].

3 Computable Planar Embeddings

The most straightforward way one might try to define “computably planar”
would be to insist that the graph have a planar embedding that was itself
computable. Since we insist on straight line embeddings (i.e., all edges are lines),
all we need to do is say where the vertices are in the plane, and make sure that
edges do not intersect. Note that given two line segments, it is computable to
determine whether they intersect. We insist that vertices are mapped to rational
points on the plane since those are easier to represent computably.

Definition 3.1. A graph G has a computable planar embedding provided there is
a computable injective function ϕ : G→ Q×Q such that if {u1, v1}, {u2, v2} ∈ E
then the line segment from ϕ(u1) to ϕ(v1) does not intersect the line segment
from ϕ(u2) to ϕ(v2).

Theorem 3.2. There is a connected computable graph G which is planar but
has no computable planar embedding.

Proof. We will build the desired planar graph G in stages, while simultaneously
diagonalizing against all ϕe, where ϕe is supposedly a computable planar em-
bedding. The graph will consist of infinitely many copies of K4 (the complete

4



graph on four vertices), connected by a single edge from each K4 to the next.
Additionally, some pairs of K4’s will have one of each of their vertices connected
to a “new” common vertex. A possible start of the graph is shown in Fig. 1.

Figure 1: The possible start of G. The pairs connected to an additional vertex
will be determined by the construction.

At each stage s we will have built a finite graph Gs, where Gs ⊆ Gs+1.
Our final graph will be G =

⋃
s∈N Gs which is an infinite planar graph. To

diagonalize against each ϕe, we will run ϕe on two of the copies of K4 and if
ϕe embeds them in the plane in a planar way, we add a vertex adjacent to the
“inside” vertices of each K4, making ϕe’s embedding non-planar.

To keep track of vertices, we use Ti for the ith copy of K4, and call its
vertices t0i , t

1
i , t

2
i , t

3
i . Whenever in the construction we “add vertices” we mean

to take the least natural number not yet in Gs as the new vertex.
Construction: At stage 0, we add T0 and T1, each a complete graph on 4

vertices, as well as an edge from t00 to t01. Initially declare all ϕe as not defeated.
At stage s ≥ 1, begin by adding T2s and T2s+1 to the graph along with edges

{t02s−1, t02s} and {t02s, t02s+1}.
For each e ≤ s with ϕe still not defeated, run ϕe on the vertices of T2e∪T2e+1

for s steps. If ϕe,s(v)↓ for all v ∈ T2e ∪ T2e+1, then

1. Find the vertex of T2e inside the convex hull of T2e and the vertex of T2e+1

inside the convex hull of T2e+1. Call these vertices tin2e and tin2e+1. This
can be done effectively, provided ϕe gives a planar embedding of T2e and
T2e+1.

2. Unless no “inside” vertices were found, add a new vertex v to the graph
and add edges {tin2e, v} and {v, tin2e+1}. See Fig. 2.

For those e for which we completed the above, declare ϕe defeated.
This completes the construction.

tin2 tin3

Figure 2: Example of Gs if ϕ1 ↓ .

5



tin2 tin3

Figure 3: Note that Gs is still planar.

Verification: First, note that G is a planar graph. A (noncomputable) planar
embedding consists of a graph much like that of Fig. 1, where the vertices found
to be “inside” by any ϕe are placed “outside” as in Fig. 3. Also, G is clearly
computable: to decide whether two vertices are adjacent, run the construction
above until the end of a stage s where both have been mentioned. The vertices
will be adjacent in G if and only if they are adjacent at stage s + 1.

Now for each e, the partial computable function ϕe is not a computable
planar embedding. This could occur in one of two ways. Either ϕe is not
the sort of partial computable function which claims to be a planar embedding
because it does not converge on T2e∪T2e+1 or does so but does not give outputs
in Q × Q or does so but does not embed each of T2e and T2e+1 as triangular
convex hulls with a single vertex in the interior. In any of these cases, we never
act to defeat ϕe, but we don’t need to (we win for free). On the other hand, if
ϕe does appear to be a planar embedding on T2e∪T2e+1, we immediately add a
new vertex to the graph. No matter how ϕe embeds this new vertex, the result
will have an edge crossing, as the new vertex cannot be in the interior of both
convex hulls. Either way, we see that ϕe is not a planar embedding.

This completes the verification and the proof.

Notice that the way we diagonalized against ϕe was to add a new neighbor
to a pair of vertices which were cut off from each other in the proposed planar
embedding. This is acceptable for computable graphs, but would not be possible
if the graph was highly computable. In that case, ϕe could wait to see all
the neighbors of the vertices in question before it said how to embed them.
This suggests that perhaps highly computable planar graphs might always have
computable planar embeddings. This turns out to not be the case.

Theorem 3.3. There exist a highly computable graph G that is planar but has
no computable planar embedding.

Proof. The graph we build will consist of infinitely many triangles (copies of
K3). In each triangle, one vertex will be adjacent to a single vertex of the next
triangle (creating an infinite chain of triangles). Off of each of the other two
vertices of each triangle we will build a (possibly infinite) path of vertices. See
Fig. 4.

Each ϕe will be assigned two consecutive triangles in the chain. While we
wait for ϕe to compute the positions in Q×Q of the 6 vertices in question, we

6



v0
0

v1
0 v2

0

u0
0

u1
0 u2

0

v0
1

v1
1 v2

1

u0
1

u1
1 u2

1

Figure 4: Possible start of the graph for Theorem 3.3.

continue to extend the four paths emanating from the triangles. Specifically,
at each stage of the construction, if ϕe has not yet halted on its 6 inputs, add
a vertex adjacent to the end of each of these paths. If ϕe never halts or does
so but embeds the vertices in a way that creates an edge crossing (so is not a
planar embedding), these paths will be extended forever. However, if ϕe halts
and looks like it could be a planar embedding, we connect the four paths in
such a way that no matter how ϕe would embed the vertices of the paths, there
would always be at least one edge crossing.

u0
0

u1
0 u2

0

v0
0 v0

0 u0
0

u1
0u2

0v2
0v1

0 v2
0v1

0

Figure 5: After ϕ0 halts, we ensure that ϕ0 is “wrong” (left) even though the
graph is still planar (right).

To accomplish this last feat, notice that from an embedding of the triangles,
we can determine which two paths will be on the “inside” and which will be on
the “outside.” Specifically, let the two triangles consist of v0, v1, v2 and u0, u1, u2

and assume v0 is adjacent to u0 (the connecting edge which is part of the chain
of triangles). If we rotate around the first triangle clockwise, we might travel
do so in the order v0, v1, v2, or in the order v0, v2, v1. The order depends
on the embedding, but once we have the embedding, we can effectively decide
which case we are in. Without loss of generality, assume the two triangles are
embedded in the (clockwise) order v0, v1, v2 and u0, u1, u2. We say that the
paths starting at v2 and u1 are the “inside” pair, while the other two paths are
the “outside” pair. Once we have determined which pairs of paths ϕe has chosen

7



to be inside and outside, we connect the outside path from the first triangle to
the inside path from the second, and the inside path from the first triangle to
the outside path of the second. This creates a crossing of the paths as in Fig. 5,
which can only be avoided if ϕe had picked different paths to be inside and
outside by embedding one of the triangles in the opposite order. Luckily for us,
ϕe cannot change its mind.

The details of the construction are left to the reader, but we should point out
that the graph we built really is planar (just orient the triangles “correctly”) and
in fact highly computable. This is because as soon as we enumerate a vertex
into our graph in the construction, we say exactly what vertices previously
mentioned it is adjacent to (so the graph is computable) and we know exactly
what the degree of each vertex will be (vertices in the paths will always have
degree 2, vertices in triangles will have degree 3 or 4 depending if they start an
infinite path or are the vertices we use to connect all the triangles). The graph
will not have a computable planar embedding, since no ϕe can correctly embed
its six assigned vertices.

4 Computable Facewise Adjacency

A planar embedding tells us exactly where to place vertices of the graph. Per-
haps this is too precise. In attempting to effectively describe how we draw a
graph, we really only care about the general location of vertices, relative to other
vertices. We might want something along the lines of, “after drawing these three
vertices as a triangle, you put the next vertex inside the triangle, and the one
after that outside of the triangle.” Such a description would ensure that these
two newly placed vertices are in some sense far away from each other in the
drawing, as they belong to different faces of some subgraph. The following is
an attempt to describe this notion of “closeness.”

For finite planar graphs, each planar embedding divides the plane into re-
gions (called faces) separated by the edges and vertices. This leads to a (pos-
sibly) different method for describing a planar embedding of a graph: for each
pair of vertices, we can say whether or not they are facewise adjacent in that
embedding. Intuitively, facewise adjacent vertices are those which border the
same face in the embedding. For infinite graphs we must be careful here, as faces
might be bordered by infinitely many vertices, converging to an accumulation
point. For example, consider the graph in Fig. 6.

To avoid these messy cases, we will say that two vertices are facewise adjacent
provided they are not separated by a finite cycle. Now it becomes an easy matter
to define the computable analog.

Definition 4.1. In a particular planar embedding of a graph G, vertices u and
v are facewise adjacent provided there is no (finite) cycle for which u is on the
“inside” and v is on the “outside” (or visa-versa).

Definition 4.2. A computable graph G has a computable facewise adjacency

8



v1

v0

Figure 6: Is v0 facewise adjacent to v1 if there are two infinite paths spiraling
to an accumulation point?

(relative to a particular planar embedding) provided there is a computable func-
tion ϕ such that ϕ(u, v) = 1 if u is facewise adjacent to v and 0 otherwise.

Note that pairs of vertices might be facewise adjacent in one planar embed-
ding but not in another (which is what we want, since we are looking for ways
to describe particular planar representations), although there are some graphs
in which facewise adjacency is preserved in any planar representation. For a
graph to have its facewise adjacency relation computable relative to a particu-
lar planar embedding, we require that the graph be computable but not that
there exist a computable planar embedding a priori (it could turn out that we
could compute the planar embedding from the facewise adjacency relation, but
we leave this as an open question). It would be reasonable to assume that a
noncomputable planar embedding would yield a noncomputable facewise adja-
cency. We can actually do a good deal better: there is a computable graph with
computable planar embedding for which no facewise adjacency relation (relative
to any planar embedding) is computable.

We could prove this result by again diagonalizing against all partial com-
putable functions. Instead, for variety, we will show how to code the halting set
K into the facewise adjacency relation. This will establish the stronger result
that there is a computable graph for which every facewise adjacency relation
computes the halting set. (This is the best result possible, since the halting set
can check for the existance of a separating cycle, and thus decide whether given
vertices are facewise adjacent.)

To accomplish this, we will have a particular subgraph assigned to each
n ∈ N to which we add vertices to make a pair no longer facewise adjacent
precisely when n ∈ K. Before giving the proof, we describe the “gadgets” used
in the construction and prove a purely graph-theoretic result about their planar
embeddings.

Definition 4.3. Define D to be a copy of C4 (a 4-cycle), with vertices v0, v1, v2, v3.

We will define D̂ ⊃ D to be the result of adding the vertices v4, v5 and edges

9



shown in Fig. 7.

v0

v1

v2

v3

v4

v5

Figure 7: The resulting graph, D̂, after adding new vertices and edges.

Note that v1 and v3 are facewise adjacent in D (in every planar embedding),

but not in D̂, at least not in the embedding drawn above. It turns out that v1
and v3 are not facewise adjacent in any planar embedding of D̂.

Lemma 4.4. There is no embedding of D̂ such that v1 is facewise adjacent to
v3.

Proof. If v1 and v3 were facewise adjacent in a particular embedding of D̂, then
we could add the edge {v1, v3} ∈ E and still have a planar graph (this is a finite
graph, so we need not worry about accumulation points). But this new graph
would be a subdivision of K5, so it would not be planar. Therefore, there is no
planar embedding of D̂ such that v1 is facewise adjacent to v3.

Theorem 4.5. There is a computable planar graph for which the facewise ad-
jacency relation in every planar embedding computes the halting set.

Proof. Fix an effective enumeration Ks of the halting set K. While we run this
enumeration, we build G as a sequence D0, D1, . . . of copies of the graph D
from Definition 4.3, chained together with edges from v2 of Di to v0 of Di+1.
Whenever we see a number n appear in K (that is, when n ∈ Ks \ Ks−1) we

add vertices to the gadget Dn to form D̂n.
This is enough. To decide whether n ∈ K, we simply ask whether the

vertices v1 and v3 in Dn are facewise adjacent. If the answer is yes, we must
not have added vertices to Dn, so n /∈ K. On the other hand, if the answer is
no, then we definitely did add the vertices, so n ∈ K. Therefore, if we are able
to compute the halting set from a computable facewise adjacency then there is
no computable planar graph G which has a computable facewise adjacency.

Again, our proof relied on our ability to add edges to a vertex arbitrarily
late. And again, it did not need to.

Theorem 4.6. There is a highly computable graph for which the facewise ad-
jacency relation in every planar embedding computes the halting set.

10



Proof. The proof is almost identical to that of Theorem 4.5. However, now
when initializing Dn we begin adding two paths off of each of the vertices v0,
and v1 and also a path off of each of v2 and v3. At each stage for which n does
not appear in Ks, add a new vertex to the end of each path. If n never enters
K, we continue to build these paths forever. If n does enter K, we add vertices
v4 and v5, as before, but now make them adjacent to the ends of the paths,
creating a subdivision of D̂n.

Note that if v1 and v3 are facewise adjacent (in any particular embedding)
then we must not have connected the ends of the paths, so n /∈ K. On the other
hand, if v1 and v3 are not facewise adjacent (in a particular embedding) then
we must have connected the paths, so n ∈ K.

Figure 8: Possible start of G. In this case, we saw 2 enter K at stage 3 so we
formed a subdivision of D̂2, but 0 and 1 have not yet appeared in K.

5 Computable Radial Adjacency

Yet another approach to describing the planarity of a graph is to specify which
edges radiate from a given vertex in which order. That is, if you have a planar
embedding and look at a given edge e incident to a given vertex v, we should
be able to say which edge e′ incident to v is the next edge rotating around
counterclockwise from e (an idea inspired by the method used by Lipton and
Tarjan to represent a planar embedding in [10]). We will call such pairs e and e′

radially adjacent. For computable graphs, we can ask whether a radial adjacency
relation is computable.

Definition 5.1. In a particular planar embedding of a graph G, adjacent edges
{u, v} and {u,w} are radially adjacent provided when you rotate counterclock-
wise from {u, v}, centered at u, the first edge you encounter is {u,w}.

Definition 5.2. A computable graph has a computable radial adjacency (rela-
tive to a particular planar embedding) provided there is a computable function

11



ϕ, such that ϕ(e1, e2) = 1 if e1 and e2 are edges and are radially adjacent and
0 otherwise.

Note that the computable function ϕ accepts edges, which means it actually
accepts a 4-tuple of vertices, and interprets the first two as an edge, and the
last two as an edge, then checks whether these really are edges, checks whether
they have a vertex in common, and then checks whether they are radially ad-
jacent. As with facewise adjacency, whether edges are radially adjacent can
depend on the planar embedding. Still, there are computable planar graphs
for which all radial adjacency relations (relative to all planar embeddings) are
noncomputable.

Theorem 5.3. There is a computable planar graph for which radial adjacency
relative to any planar embedding computes the halting set.

The proof will be similar to that of Theorem 4.5, but using different gadgets.

Definition 5.4. Define the graph H where v0, v1, v2 ∈ V and {v0, v1}, {v0, v2} ∈
E. Let Ĥ be defined as H ⊂ Ĥ where we add the vertices v3, v4, v5 and edges
as in Fig. 9.

v0

v1

v2

v3v4

Figure 9: The graph Ĥ.

Lemma 5.5. The edges {v1, v0} and {v1, v2} in Ĥ are not radially adjacent in
any planar embedding.

Proof. Suppose there were a planar embedding of Ĥ in which {v1, v0} ∈ E
and {v1, v2} ∈ E were radially adjacent. Then we can add the edge {v0, v2}
and not intersect any other edge of Ĥ. But this would give a copy of K5, a
contradiction. Therefore, there is no planar embedding of Ĥ where the edges
{v1, v0} and {v1, v2} radially adjacent.

Now we can prove the computability result.

Proof of Theorem 5.3. We build G while enumerating K. The graph will consist
of a sequence H0, H1, . . . of copies of the graph H from Definition 5.4, chained
together with edges along the base (as in Fig. 10). At each stage, we extend

12



this sequence and wait for a number n to enter K. For this n, we add vertices
to Hn to form Ĥn. This completes the construction.

To determine if n ∈ K, we simply ask whether the two edges {v0, v1} and
{v1, v2} in Hn are radial adjacent. If the answer is yes, then we must not have

added vertices to Hn to form Ĥn, so n /∈ K. On the other hand, if the answer
is no then we must have added the vertices to Hn, so n ∈ K.

Figure 10: Possible start of G. In this case, we have seen 0 and 2 enter K, but
not 1 (yet).

The next natural question to ask is whether there exists a highly computable
planar graph with noncomputable radial adjacency. This sort of extension
worked for computable planar embeddings and for facewise adjacency, but it
is not nearly as straight forward for radial adjacency. The way we forced two
edges to not be radially adjacent is by adding a new edge to their common
vertex. This can happen arbitrarily late in the construction, so there is no hope
to replicate this for highly computable graphs. In the previous results, we over-
came this by adding ever-lengthening paths instead of single edges, and only
connecting them (arbitrarily late) when needed. Here, as soon as we add an
edge (even if it is the beginning of a path) we have created a graph which has
at least one planar embedding for which the target edges are no longer radially
adjacent.

In particular, suppose the computable graph also has a computable planar
embedding. This is not enough to say that radially adjacency is computable
in general, but if the graph is also highly computable, then it is. Given two
edges e and e′ with common vertex u, we find all the neighbors of u (using the
computable degree function) and then see if any of them occur between e and
e′ (using the computable planar embedding).

If the graph does not have any computable planar embeddings, then we can
also ensure that the radial adjacency relation is noncomputable. To do this we
would replicate the construction of Theorem 3.3, but instead of waiting for ϕe

to embed vertices, we wait for ϕe to say which of the base edges are radially
adjacent. After ϕe has committed, we link the paths to ensure ϕe is wrong. This
construction is not enough to code in the halting set however, and we leave that
possibility as an open question.

13



6 Conclusion

We have given three potential definitions for what it might mean for a com-
putable graph to be computably planar. These are motivated by what we
“should” be able to do with a nicely presented planar graph. We should be
able to say where vertices should be embedding in the plane so that the re-
sulting graph embedding has no edges crossing. It should also be possible to
decide whether two vertices border the same face in a particular (or any) planar
embedding. It also should be possible to decide the order in which edges radi-
ate from a vertex in a particular (or any) planar embedding. We called these
computable planar embeddings, computable facewise adjacency, and computable
radial adjacency respectively. In each case, there are computable graphs that
are planar but not computably planar.

We leave open the question of which of these definitions should be adopted
as the definition. Whatever the choice, the results about the other two notions
would be theorems. For example, if we decide that a computable planar graph
is computably planar provided there is a computable planar embedding, then
we have the theorem, “There is a computably planar graph with noncomputable
facewise adjacency relation” from Theorem 4.5.

This raises the more general question of how our three notions of computable
planarity relate to each other. For any pair, we can ask whether one implies the
other. For example, it might be that every planar graph with computable radial
adjacency also has a computable planar embedding. That is, perhaps knowing
a particular radial adjacency relation would actually tell us how to embed the
graph in the plane without crossings. Of the 6 possible implications, we have
negative answers to three:

Corollary 6.1 (to Theorem 4.5). There is a computable graph G with com-
putable planar embedding which does not have computable facewise adjacency.
Thus computable planar embeddings do not help compute facewise adjacency.

Corollary 6.2 (to Theorem 5.3). There is a computable graph G with com-
putable planar embedding which does not have computable radial adjacency.
Thus computable planar embeddings do not help compute radial adjacency.

Corollary 6.3. There is a computable graph G with computable radial adjacency
which does not have computable facewise adjacency. Thus computable radial
adjacency does not help compute facewise adjacency.

Proof. The graph constructed in the proof of Theorem 4.6 has computable radial
adjacency.

Question 6.4. Do any of the other three implications hold? That is, if a graph
has a computable facewise adjacency, does it have computable radial adjacency
or a computable embedding, and if a graph has computable radial adjacency,
does it have a computable embedding?

14



Another direction for future study is to consider just how noncomputable
planar embeddings, facewise adjacency and radial adjacency can be. By Theo-
rem 4.5, we know there are computable graphs with facewise adjacency at least
as complicated as the halting set. Could they have even higher complexity?
In this case it is fairly easy to see the answer is no, as long as we consider a
particular planar embedding.

Theorem 6.5. Let G be a computable planar graph with computable planar
embedding ϕ. Then K can compute the facewise adjacency in G and K can
compute the radial adjacency in G.

Proof. To decide whether vertices v and u are facewise adjacent, we simply ask
whether there is a finite cycle which separates v and u. K can answer this
existential question, so can compute facewise adjacency.

Similarly, K can compute the radial adjacency of any graph with particular
computable planar embedding, since K can compute the degree of a vertex,
and from this (and a computable planar embedding) we can compute radial
adjacency.

The main open question in this direction is what the complexity of a planar
embedding might be.

Question 6.6. Is there a computable planar graph for which every planar
embedding has complexity strictly larger than K? Alternatively, does every
computable planar graph have a planar embedding a complexity strictly less
than K?

Finally, we think another interesting direction would be to investigate how
these notions of planarity relate to other questions in graph theory. Bean’s result
[1] that there is a computable planar graph with infinite computable chromatic
number essentially produces a planar embedding (that is how we know the
constructed graph is planar). However, it is not immediately clear whether the
graph produced has computable facewise adjacency or radial adjacency.

Question 6.7. Is there a computable planar graph with computable facewise
(radial) adjacency with computable chromatic number greater than 4?

References

[1] Dwight R. Bean, Effective coloration, J. Symbolic Logic 41 (1976), no. 2,
469–480. MR 0416889 (54 #4952)

[2] , Recursive Euler and Hamilton paths, Proc. Amer. Math. Soc. 55
(1976), no. 2, 385–394. MR 0416888 (54 #4951)

[3] Reinhard Diestel, Graph theory, fourth ed., Graduate Texts in Mathemat-
ics, vol. 173, Springer, Heidelberg, 2010. MR 2744811 (2011m:05002)

15



[4] P. Erdös, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950),
127–141. MR 0035809 (12,14c)

[5] István Fáry, On straight line representation of planar graphs, Acta Univ.
Szeged. Sect. Sci. Math. 11 (1948), 229–233. MR 0026311 (10,136f)

[6] W. Gasarch, A survey of recursive combinatorics, Handbook of recursive
mathematics, Vol. 2, Stud. Logic Found. Math., vol. 139, North-Holland,
Amsterdam, 1998, pp. 1041–1176. MR 1673598 (2000f:03127)

[7] David Harel, Hamiltonian paths in infinite graphs, Israel J. Math. 76
(1991), no. 3, 317–336. MR 1177348 (93d:68023)

[8] Matthew Jura, Oscar Levin, and Tyler Markkanen, Domatic partitions of
computable graphs, Arch. Math. Logic 53 (2014), no. 1-2, 137–155. MR
3151402

[9] Henry A. Kierstead, Recursive colorings of highly recursive graphs, Canad.
J. Math. 33 (1981), no. 6, 1279–1290. MR 645224 (84b:05045)

[10] Richard J. Lipton and Robert Endre Tarjan, A separator theorem for pla-
nar graphs, SIAM J. Appl. Math. 36 (1979), no. 2, 177–189. MR 524495
(80k:68050)

[11] Alfred B. Manaster and Joseph G. Rosenstein, Effective matchmaking (re-
cursion theoretic aspects of a theorem of Philip Hall), Proc. London Math.
Soc. (3) 25 (1972), 615–654. MR 0314610 (47 #3161)

[12] Robert I. Soare, Recursively enumerable sets and degrees, Perspectives in
Mathematical Logic, Springer-Verlag, Berlin, 1987, A study of computable
functions and computably generated sets. MR 882921 (88m:03003)

[13] Carsten Thomassen, Straight line representations of infinite planar graphs,
J. London Math. Soc. (2) 16 (1977), no. 3, 411–423. MR 479743 (80i:05039)

16


	Introduction
	Preliminaries
	Computable Planar Embeddings
	Computable Facewise Adjacency
	Computable Radial Adjacency
	Conclusion

