To Infinity and Beyond

Oscar Levin

Coastal Carolina University 31st Annual Math Contest March 12, 2010

Close to Infinite?

100 00 00 00 00 00 00 00 00 00 .

OR

2

Thinking about Infinity

- What is ∞ ? Is it a number?
- How big is it?
- Is there anything bigger?
- What is $\infty-\infty$?
- Are any numbers close to ∞ ?
- Is anything actually infinite?

What is Infinity?

Let's start with an easier question:
What is 2 ?

Counting something that never ends

Whenever you have a collection (or set) of objects, you can ask how many objects there are in the collection.

What about the set of Natural Numbers: $\{1,2,3,4, \ldots\}$? How many objects are there?

Answer:
\bigcirc

What else is infinite?

Natural Numbers:

$$
\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \ldots\}
$$

Non-negative Integers:

$$
\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \ldots\}
$$

Even Natural Numbers:

$$
\{2,4,6,8,10,12,14, \ldots\}
$$

Integers:

$$
\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}
$$

Rational Numbers:

$$
\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, \frac{3}{1}, \frac{1}{4}, \frac{3}{4}, \frac{4}{3}, \ldots\right\}
$$

Real Numbers:

Which is larger?

$$
\begin{aligned}
& \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \ldots\} \\
& \left\{\begin{array}{c}
\{1, \\
2,
\end{array}, 8, \quad 10, \quad 12, \quad 14,\right. \\
& 16, \ldots\}
\end{aligned}
$$

Are there more natural numbers than even numbers? Twice as many?

Comparing sizes

If you have a bunch of umbrellas, and a bunch of boxes, how can you tell whether you have more umbrellas or more boxes?

Naturals vs. Non-negative Integers

A motel with infinitely many rooms (room 1, room 2, room 3, etc.) is currently full. If a new traveler arrives, is it possible to give him a room?

$$
\begin{aligned}
& \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \cdots \\
& \begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 7 & 8
\end{array}
\end{aligned}
$$

Naturals vs. Evens vs. Integers

Can we put every even number into a room, with no rooms left over?

$$
\begin{array}{lllllllll|l}
\hline 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & \cdots
\end{array}
$$

Can we put every integer (positive or negative whole number) into a room with no rooms left over?

$$
\begin{array}{lllllll|l|l|}
\hline 0 & 1 & -1 & 2 & -2 & 3 & -3 & 4 & -4
\end{array}
$$

Naturals vs. Rationals

Can we put every rational number (fraction) into its own room (with no rooms left over)?

Conclusion (so far)

The evens, non-negative integers, integers, and rationals all have the same size: the size of the natural numbers.

What about the real numbers?

There are a LOT of real numbers

Is it possible to give every real number its own room?

Room \#:	Real Number:
1	0.31542621032
2	$2.01484729067 \ldots$
3	$0.1234567891011 \ldots$
4	$3.1415926535898 \ldots$
5	$0.3333333333333 \ldots$
\vdots	\vdots

A Missing Number: 0.55575 . . .

Infinity is weird

There are more real numbers than natural numbers!!!!!

There are different sizes of infinity!!!!!!!!!!!!!!!

The best thing: the more you investigate infinity, the weirder it gets!

