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Introduction

Main Question

Given a computable ordered field, how many computable copies are there,
up to computable isomorphism?

Think: refine isomorphism classes to distinguish between ordered fields
which are isomorphic but not computably isomorphic.

Alternatively: how many substantially different ways are there to
computably code up an ordered field.
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Computability

Intuitive definition

A set of natural numbers is computable if there is an algorithm which
decides whether any natural number is in the set.

A function f : N→ N is computable if there is an algorithm which
gives f(n) for all n ∈ N.

Computable ordered fields

An ordered field is computable if the field operations (+ and ·) are
computable functions, and the ordering (≤) is a computable relation.

We take N to be the elements of the field.

Examples

Q, Q(
√

2,
√

3), Q(
√
pi)i∈N, Q(t), Q(ti)i∈N, etc.
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Computable Dimension

Definition

The computable dimension of a computable structure A is the
number of computable copies of A up to computable isomorphism.

A computable structure A is computably categorical if it’s
computable dimension is 1.

Theorem

Let F be a computable ordered field with finite transcendence degree.
Then F is computably categorical. In fact, every isomorphism between
copies of F is a computable isomorphism.
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Towards the Proof

We have:
ψ : F → F̂

and need to compute ψ(a) for each a ∈ F .

Easy example

Let F = Q: Search through F and F̂ until we find the 1 elements.
Continue.

Slightly harder

Let F = Q(t0, t1, . . . , tn): Non-uniformly determine ψ(t0), . . . ψ(tn).
Continue.
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The General Case

In general, F can be an algebraic extension of E = Q(t0, . . . , tn).

Each a ∈ F is either in E or is the root of a polynomial in E[x].

In the first case (a ∈ E): find ψ(a) as before.

In the second case: search through a list of all polynomials in E[x] to find
one such that p(a) = 0.

Find the cooresponding polynomial p̂ in Ê[x]. Find a root of p̂ in F̂ .

Problem: is it the correct root?
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Distinguishing roots

Given a polynomial p(x) and roots a and b, decide whether a = b.

Calculus method

Compare the signs of {p′(a), p′′(a), . . . , p(n)(a)} and
{p′(b), p′′(b), . . . , p(n)(b)}.

Logic method

Pass to the real closures of F and F̂ , and decide whether a and b are both
the kth least root of p(x), using the decidability of RCF.

Either way, we can determine if we have found the correct root. If not,
find another one.
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Fields with Infinite Transcendence Degree

The infinite transcendence degree case looks to be much harder.

Theorem

If F is a computable ordered field with infinite transcendence degree, then
F has infinite computable dimension when:

F is real closed.

F is archimedean, purely transcendental, with a computable pure
transcendence basis.

Problem: For fields between these, might the extra roots help match up
transcendence bases?
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The End

Thanks for listening.

Slides available at OscarLevin.com
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