A Paradox of Finite Cardinality

Oscar Levin

University of Northern Colorado
2017 Meeting of the Rocky Mountain Section of the MAA April 22, 2017

Joint work with Tyler Markkanen

Set Theory for Undergrads

What is a set?

What do we tell our students?

Defining Sets

Axiom 0: Set Existence.

$$
\exists x(x=x)
$$

Axiom 1: Extensionality.

$$
\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y
$$

Axiom 2: Foundation.

$$
\exists y(y \in x) \rightarrow \exists y(y \in x \wedge \neg \exists z(z \in x \wedge z \in y))
$$

Axiom 3: Comprehension Scheme. ${ }^{1}$

$$
\exists y \forall x(x \in y \quad \leftrightarrow \quad x \in z \wedge \varphi(x))
$$

Axiom 4: Pairing.

$$
\exists z(x \in z \wedge y \in z)
$$

Axiom 5: Union.

$$
\exists A \forall Y \forall x(x \in Y \wedge Y \in \mathcal{F} \rightarrow x \in A)
$$

Axiom 6: Replacement Scheme. ${ }^{2}$

$$
\forall x \in A \exists!y \varphi(x, y) \rightarrow \exists B \forall x \in A \exists y \in B \varphi(x, y)
$$

Axiom 7: Infinity.

$$
\exists x(\emptyset \in x \wedge \forall y \in x(S(y) \in x))
$$

Axiom 8: Power Set.

$$
\exists y \forall z(z \subseteq x \rightarrow z \in y)
$$

Axiom 9: Choice.

Defining Sets Naively

Definition

A set is an unordered collection of objects.

Examples:

$$
\{0,1,2\}
$$

$$
\begin{gathered}
\{0,1,2, \ldots, 10\} \\
\{0,1,2, \ldots\}=\mathbb{N}
\end{gathered}
$$

$$
\{x \in \mathbb{N}: x \text { is even }\}
$$

$$
\{X \in \mathbb{N}: X \notin X\}
$$

Careful!

$$
\begin{gathered}
\{0,1,2\}=\{2,0,1\} \\
\{0,1,2\} \neq\{0,1,2,3\}
\end{gathered}
$$

$$
\{0,1,2\} \neq\{1,2,3\}
$$

$$
\{0,1,2\}=\{1-1,1,1+1\}
$$

$$
\{0,1,2\}=\{0,1,1+1,2-1,3-2\}
$$

Sum more sets

Define $A+B=\{a+b: a \in A, b \in B\}$.

Is $|A+B|=\geq|A|+\cdot|B|-1$?

Let $A=\{0,1,2\}$ and $B=\{1,2,3\}$?

$$
\begin{gathered}
A+B=\{0+1,0+2,0+3,1+1,1+2,1+3,2+1,2+2,2+3\} \\
A+B=\{1,2,3,2,3,4,3,4,5\}=\{1,2,3,4,5\}
\end{gathered}
$$

Sets for Counting

How many subsets of $A=\{0,1, \ldots, 9\}$ are there?

$$
\mathcal{P}(A)=\{\emptyset,\{0\},\{1\}, \ldots\{0,1\}, \ldots, A\}
$$

Let $A=\{0,1, \ldots, 9\}$. Define $\mathcal{B}_{2}=\{B \subseteq A:|B|=2\}$. Find $\left|\mathcal{B}_{2}\right|$.

1996 Putnam Exam, B1

Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

■ $n=1:\{1\}$
■ $n=2:\{1\}$
■ $n=3:\{1\},\{2,3\}$
■ $n=4:\{1\},\{2,3\},\{2,4\}$
■ $n=5:\{1\},\{2,3\},\{2,4\},\{2,5\},\{3,4,5\}$

Sets containing their own cardinality

$$
A=\{2,|A|\}
$$

Other examples:
■ $B=\{1,3,|B|\}$
■ $C=\{1,|D|\}$ where $D=\{2,|C|\}$

Comprehension

Axiom 3: Comprehension Scheme ${ }^{1}$

$$
\exists y \forall x(x \in y \quad \leftrightarrow \quad x \in z \wedge \varphi(x))
$$

$$
Y=\{x \in Z: \varphi(x)\} \text { exists }
$$

Let $\varphi(x)$ be " $x=2 \vee x=|Y|$ "

$$
Y=\{x \in \mathbb{N}: x=2 \vee x=|Y|\}
$$

With the footnote

Axiom 3: Comprehension Scheme.
For each formula φ without y free:

$$
\exists y \forall x(x \in y \quad \leftrightarrow \quad x \in z \wedge \varphi(x))
$$

But where is the fun in that!

Sometimes its OK

Examples:

$$
\begin{gathered}
A=\{|A|\} \\
B=\{2,3,|B|\} \\
C=\{3,4,5,|C|,|C|+1\} \\
D=\{x \in \mathbb{N}: x \leq|D|\}
\end{gathered}
$$

Sometimes its more than OK

(i.e., NOT OK)

$$
\begin{gathered}
A=\{1,|A|\} \\
B=\{2,4,|B|\} \\
C=\{3,4,|C|,|C|+1,|C|+2\}
\end{gathered}
$$

$$
D=\{x \in \mathbb{N}: x<|D|\}
$$

$|A|$ more:

Let $A=\{x \in \mathbb{N}: x \leq|B|\}$ where $B=\{x \in \mathbb{N}:|A| \leq x \leq 10\}$.
Find A and B.

Thanks!

Slides:

math.oscarlevin.com/research.php

