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Set Theory for Undergrads

What is a set?

What do we tell our students?



Defining Sets
Axiom 0: Set Existence.

∃x(x = x)

Axiom 1: Extensionality.

∀z(z ∈ x↔ z ∈ y) → x = y

Axiom 2: Foundation.

∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))

Axiom 3: Comprehension Scheme.1

∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ(x))

Axiom 4: Pairing.
∃z(x ∈ z ∧ y ∈ z)

Axiom 5: Union.
∃A∀Y∀x(x ∈ Y ∧ Y ∈ F → x ∈ A)

Axiom 6: Replacement Scheme.2

∀x ∈ A∃!yϕ(x, y) → ∃B∀x ∈ A∃y ∈ Bϕ(x, y)

Axiom 7: Infinity.
∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x))

Axiom 8: Power Set.
∃y∀z(z ⊆ x → z ∈ y)

Axiom 9: Choice.

∅ /∈ F ∧ ∀x ∈ F ∀y ∈ F (x 6= y→ x ∩ y = ∅) → ∃C ∀x ∈ F (SING(C ∩ x))
1For each formula ϕ without y free.
2For each formula ϕ without B free.



Defining Sets Naively

Definition

A set is an unordered collection of objects.

Examples:
{0, 1, 2}

{0, 1, 2, . . . , 10}

{0, 1, 2, . . .} = N

{x ∈ N : x is even}

{X ∈ N : X /∈ X}



Careful!

{0, 1, 2} = {2, 0, 1}

{0, 1, 2} 6= {0, 1, 2, 3}

{0, 1, 2} 6= {1, 2, 3}

{0, 1, 2} = {1− 1, 1, 1 + 1}

{0, 1, 2} = {0, 1, 1 + 1, 2− 1, 3− 2}



Sum more sets

Define A + B = {a + b : a ∈ A, b ∈ B}.

Is |A + B| = ≥ |A|+ · |B| − 1?

Let A = {0, 1, 2} and B = {1, 2, 3}?

A+B = {0+1, 0+2, 0+3, 1+1, 1+2, 1+3, 2+1, 2+2, 2+3}

A + B = {1, 2, 3, 2, 3, 4, 3, 4, 5} = {1, 2, 3, 4, 5}



Sets for Counting

How many subsets of A = {0, 1, . . . , 9} are there?

P(A) = {∅, {0}, {1}, . . . {0, 1}, . . . ,A}

Let A = {0, 1, . . . , 9}. Define B2 = {B ⊆ A : |B| = 2}. Find |B2|.



1996 Putnam Exam, B1

Define a selfish set to be a set which has its own cardinality
(number of elements) as an element. Find, with proof, the
number of subsets of {1, 2, . . . , n} which are minimal selfish
sets, that is, selfish sets none of whose proper subsets is
selfish.

n = 1: {1}
n = 2: {1}
n = 3: {1}, {2, 3}
n = 4: {1}, {2, 3}, {2, 4}
n = 5: {1}, {2, 3}, {2, 4}, {2, 5}, {3, 4, 5}



Sets containing their own cardinality

A = {2, |A|}

Other examples:
B = {1, 3, |B|}
C = {1, |D|} where D = {2, |C|}



Comprehension

Axiom 3: Comprehension Scheme1

∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ(x))

Y = {x ∈ Z : ϕ(x)} exists

Let ϕ(x) be “x = 2 ∨ x = |Y|”

Y = {x ∈ N : x = 2 ∨ x = |Y|}



With the footnote

Axiom 3: Comprehension Scheme.
For each formula ϕ without y free:

∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ(x))

But where is the fun in that!



Sometimes its OK

Examples:
A = {|A|}

B = {2, 3, |B|}

C = {3, 4, 5, |C|, |C|+ 1}

D = {x ∈ N : x ≤ |D|}



Sometimes its more than OK

(i.e., NOT OK)
A = {1, |A|}

B = {2, 4, |B|}

C = {3, 4, |C|, |C|+ 1, |C|+ 2}

D = {x ∈ N : x < |D|}



|A| more:

Let A = {x ∈ N : x ≤ |B|} where B = {x ∈ N : |A| ≤ x ≤ 10}.

Find A and B.
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